
189. More metallicities and gravities

SINCE Data Release 3 in 2022 (which included a cat-
alogue of metallicities, temperatures and gravities

for 470 million sources), four community-generated cat-
alogues of [M/H], Teff, and log g have been made avail-
able, which I will describe here. To understand their
context, let me start with some background.

ALONG WITH THE main astrometric field, and the ra-
dial velocity spectrometer (RVS) field, the Gaia fo-

cal plane includes two low-resolution objective prism
fields, BP (blue photometer) and RP (red photometer),
together generally denoted XP (essay 68). The prisms
disperse the spectra over ª45 pixels in the along-scan di-
rection, with the 60-pixel window allowing for sky sub-
traction. The spectral dispersion varies from 3–27 nm
per pixel over 330–680 nm for BP, and from 7–15 nm per
pixel over 640–1050 nm for RP.

For the majority of objects, G >ª 11.5 mag, the BP
and RP spectra are binned on-chip in the across-scan di-
rection, over 12 pixels, to form one-dimensional, along-
scan spectra. The dispersed spectra overlap in crowded
regions, and BP/RP acquisition is accordingly limited to
about 750 000 objects per square degree. The spectra are
wavelength and flux calibrated, while their integrated
fluxes provide calibrated multi-epoch photometry, des-
ignated GBP and GRP.

The 34-month Data Release 3 (essay 76) then com-
prises 1.812 billion sources with astrometric solutions to
21 mag, 1.806 billion with mean G magnitudes, 1.5 bil-
lion with mean GBP and GRP photometry, along with
219 million mean BP/RP spectra.

The task of source classification (as star, white dwarf,
physical binary, quasar, or galaxy), and the ‘astrophys-
ical parameters inference system’ (Apsis) is carried out
by Coordination Unit 8 of DPAC, and I have given
some details (and references) in essay 89. The 13 Apsis
modules take relevant combinations of the RVS spectra
(GSP–Spec) and BP/RP spectra (GSP–Phot), fit a number
of astrophysical parameters to the data, and pass the re-
sults to the FLAME module which derives the evolution-
ary parameters radius, luminosity, mass, and age.

GSP–Phot uses the XP spectra to estimate Teff, log g ,
[M/H], MG, radius R, distance, and extinctions by mod-
elling the BP/RP spectra, G magnitude, and parallax (An-
drae et al., 2023a; Creevey et al., 2023, §3.5). To match
the XP spectra, Andrae et al. (2023a) used four stellar at-
mospheric models to cover different ranges of Teff, the
Fitzpatrick (1999) mean extinction law, and a grid of
(PARSEC) isochrones to fix the absolute magnitudes.

As a result, astrophysical parameters in DR3 include
Teff, log g , and [M/H] for 470 million sources using
BP/RP (and 6 million using RVS); radius (470 million),
mass (140 million), age (120 million), and spectral types
(220 million), along with smaller catalogues of chemical
abundances, diffuse interstellar bands, activity indices,
HÆ equivalent widths, and emission-line stars.

IN AN IMPORTANT application of the XP spectral data-
base, Montegriffo et al. (2023) provided the tools

to generate synthetic photometry, for all 220 million
sources with mean BP and RP spectra, in any user-
specified photometric system (see essay 187).

They also made available an associated Gaia Syn-
thetic Photometry Catalogue (GSPC) which contains, for
the majority of the 220 million stars with XP spectra from
DR3, colours in 13 passbands. These include UBVRI in
the Johnson–Kron–Cousins system, ugriz in the SDSS
system, and two in the HST–ACS/WFC system.

LET ME EMPHASISE the size of the Gaia XP spectral
database: there are more than 20 times as many as

in the largest ground-based spectral survey, LAMOST, al-
though at only 1/20th of the spectral resolution.

And the metallicities published with DR3 can still be
improved, in part through improved calibration, more
so through additional observations as planned for DR4,
and also through better modelling of some key spectral
lines given the low resolution of the XP spectra. Further-
more, the use of synthetic model spectra (to match the
observed XP spectra) is most likely sub-optimal, leaving
parameter estimates sensitive to inaccuracies and omis-
sions in the underlying models.
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THE ASTROPHYSICAL parameters generated by DPAC
CU8 were never intended be the final word in clas-

sification or parameter estimation, and improvements
in calibration, and in training sets and algorithms were
considered inevitable.

The motivation to construct better metallicities is,
of course, based on the pursuit of accurate chemical
abundances across all stellar populations throughout
the Galaxy, which are crucial inputs for studies of star
formation, detailed nucleosynthesis modelling, Galactic
chemical and dynamical evolution, and so on.

And already, since 2023, four other large catalogues
of astrophysical parameters, focusing on [M/H], have
been derived from the XP spectra, as follows:

ZHANG ET AL. (2023) used forward modelling to es-
timate Teff, log g , and [Fe/H] for all 220 million

DR3 stars with XP spectra. Their training set used at-
mospheric parameters from LAMOST, augmented by
2MASS and WISE photometry to reduce degeneracies
and yield more precise estimates of Teff and reddening.
Their catalogue includes Teff, log g , and [Fe/H], along
with revised parallaxes and extinctions. It ignores binary
stars, and does not cover all parts of the Hertzsprung–
Russell diagram, notably white dwarfs.

ANDRAE ET AL. (2023b) building on previous work by
Rix et al. (2022), employed a specific machine-

learning algorithm, XGBoost. It was trained on 500 000
stars with stellar parameters from APOGEE, including
those with CatWISE 3.4µm and 4.6µm infrared pho-
tometry to reduce the degeneracy between Teff and red-
dening. The training set was augmented by some 300
very metal-poor stars from LAMOST (Li et al., 2022), and
they included the Gaia parallaxes to assist constraints on
log g and [M/H].

Although therefore tied to the parameter scale of
the APOGEE survey, the resulting catalogue of 175 mil-
lion stars has a mean precision of 0.1 dex in [M/H] and,
obtained as by-products, 50 K in Teff, and 0.08 dex in
log g . They also provide a catalogue of 17 million bright
(G < 16) red giants using more conservative cuts to en-
sure a higher data quality.

Chandra et al. (2023) describe an application of this
catalogue in identifying the evolution of angular mo-
mentum in the Galaxy with metallicity.

HATTORI (2024) used tree-based machine-learning to
estimate [M/H] and [Æ/Fe] for 48 million giants

and dwarfs in low-extinction regions from the DR3 XP
spectra. Again, the training set used APOGEE DR17 and
the metal-poor stars of Li et al. (2022). It resulted in a
mean precision of 0.09 dex for [M/H] and 0.04 dex for
[Æ/Fe], with the most reliable values being for giants and
metal-rich stars which dominate the training set.

Y AO ET AL. (2024) focused on the much rarer very
metal-poor stars, [Fe/H]< °2, also using XGBoost.

For GBP < 16, they developed classifiers optimised for
turn-off stars and for giant stars, finding 11 000 metal-
poor turn-off stars, and 111 000 or 44 000 bright metal-
poor giants depending on the target purity. For GBP >
16, they identified 38 000 additional turn-off candidates,
and 41 000 additional metal-poor giant candidates.

Investigations by Witten et al. (2022), meanwhile
suggest that metal-poor stars can be identified for G < 16
using the XP spectra, but that true detections will be
overwhelmed by false positives at fainter magnitudes.

THE XP DATA will provide a magnificent resource for
chemical abundance investigations. But it is also a

substantial database for research into classification al-
gorithms, and the trade-offs between ‘physics-driven’
(relying on synthetic stellar spectra) and ‘data-driven’
(based on machine-learning) classification.

Some of this path has already been trodden, for ex-
ample by APOGEE (e.g. Ness et al., 2015; Leung & Bovy,
2019; Ting et al., 2019).

As a cautionary example, at least some algorithms
which estimate [Æ/Fe] from the XP spectra do so by ex-
ploiting known correlations between [Æ/Fe] and other
elements, rather than the direct effect of [Æ/Fe] on the
spectrum (e.g. Gavel et al., 2021; Hattori, 2024).

THOSE INVOLVED in these kinds of studies will appre-
ciate the contribution of Laroche & Speagle (2024).

They argue that physics-driven models inevitably suf-
fer from a ‘synthetic gap’, viz. a combination of theoreti-
cal and instrumental effects which together produce un-
resolvable differences between synthetic and observed
spectra. At the same time, data-driven models which de-
pend on ‘labels’ (a generic term here covering Teff, log g ,
[M/H], and [Æ/Fe]) themselves suffer from ‘label system-
atics’ which decrease any model’s performance.

They demonstrate this by applying a variational
auto-encoder (unsupervised learning) to the XP spec-
tra which (they argue) learns stellar properties directly
from the data. They also show that the spectra do
contain meaningful [Æ/Fe] information, by identifying
Æ-bimodality in the absence of stellar label correlations.

They conclude: ‘Label-dependent models are inca-
pable of exploiting the entire astrophysical information
in the XP data, because they are limited by the availability
of stellar labels to train on. Novel data-driven techniques
must be developed to tackle this big data problem’.

Using the same techniques used by Large Language
Models for AI, and applied to the XP spectra, Leung &
Bovy (2024) argue that ‘building and training a single
foundation model without fine-tuning using data and
parameters from multiple surveys to predict unmeasured
observations and parameters is well within reach’.
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